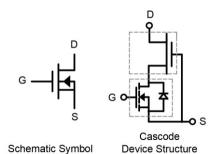


650V GaN Power Transistor (FET)


Features

- Easy to use, compatible with standard gate drivers
- Excellent Q_G x R_{DS(on)} figure of merit (FOM)
- Low Q_{RR} , no free-wheeling diode required
- · Low switching loss
- RoHS compliant and Halogen-free

		_	
Λ 👝	mli.	i	
Ap	DIIC	.au	บบร

- High efficiency power supplies
- High efficiency USB PD adapters
- Other consumer electronics

Product Summary

650

240

5.5

31

٧

 $\boldsymbol{m}\boldsymbol{\Omega}$

nC

nC

 $V_{\text{DSS}} \\$

R_{DS(on), typ}

 $Q_{G, typ}$

Q_{RR, typ}

Packaging

Part Number	Package	Packaging	Base QTY
RX65T300PS2A	3 Lead TO-220	Tube	50

Maximum ratings, at T_C=25 ℃, unless otherwise specified

Symbol	Parameter	Limit Value	Unit	
	Continuous drain current @T _C =25℃		11	Α
I _D	Continuous drain current @T _C =100℃		7	Α
	Pulsed drain current @T _C =25℃ (pulse w	ridth: 100us)	26	Α
I _{DM}	Pulsed drain current @T _C =150℃ (pulse	width: 100us)	19	А
V_{DSS}	Drain to source voltage (T₁ = -55℃ to 15	0°C)	650	V
V_{TDSS}	Transient drain to source voltage ^a		800	V
V_{GSS}	Gate to source voltage		±20	V
P_D	Maximum power dissipation @T _C =25℃		60	W
T _C		Case	-55 to 150	°C
TJ	Operating temperature	Junction	-55 to 150	°C
Ts	Storage temperature		-55 to 150	°C
T _{CSOLD}	Soldering peak temperature		260	°C

Thermal Resistance

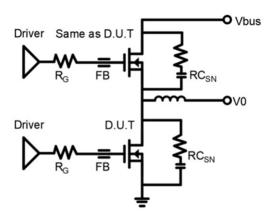
Symbol	Parameter	Typical	Unit
Rөлс	Junction-to-case	2.1	℃/W
Roja	Junction-to-ambient ^b	50	℃/W

Notes:

- a. Off-state spike duty cycle < 0.01, spike duration < 2us
- b. Device on one layer epoxy PCB for drain connection (vertical and without air stream cooling, with 6cm^2 copper area and $70\mu\text{m}$ thickness)

Electrical Parameters, at T₁=25 °C, unless otherwise specified

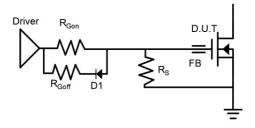
Symbol	Min	Тур	Max	Unit	Test Conditions	
Forward Char	racteristics	I	1			
$V_{DSS-MAX}$	650	-	-	V	V _{GS} =0V	
BV _{DSS}	-	1000	-		V _{GS} =0V, I _{DSS} =250μA	
$V_{GS(th)}$	1.1	1.8	2.5	V	$V_{DS}=V_{GS}$, $I_D=500\mu A$	
5 C	-	240	300	0	V _{GS} =8V, I _D =4A, T _J =25℃	
R _{DS(on)} c	-	500	-	mΩ	V _{GS} =8V, I _D =4A, T _J =150℃	
I _{DSS}	-	8	20	μΑ	V _{DS} =700V, V _{GS} =0V, T _J =25℃	
IDSS	-	50	-	μΑ	V _{DS} =700V, V _{GS} =0V, T _J =150℃	
I _{GSS}	-	-	150	nA	V _{GS} =20V	
'GSS	-	-	-150	nA	V _{GS} =-20V	
C _{ISS}	-	310	-	pF		
C _{OSS}	-	24	-	pF	VGS=0V, VDS=400V, f=1MHz	
C_{RSS}	-	0.8	-	pF		
C _{O(er)}	-	34	-	pF		
$C_{O(tr)}$	-	77	-	pF	V _{GS} =0V, V _{DS} =0 - 400V	
Q_{OSS}	-	31	-	nC		
Q_{G}	-	5.5	-			
Q_{GS}	-	1.1	-	nC	V _{DS} =400V, V _{GS} =0 - 8V, I _D =6A	
Q_{GD}	-	2.5	-			
$t_{D(on)}$	-	20	-			
t_R	-	12	-	ns	V _{DS} =400V, V _{GS} =0 - 12V, I _D =4A, R _G =47Ω	
$t_{D(off)}$	-	72	-	113	V _{DS} -400V, V _{GS} -0 - 12V, I _D -4A, N _G -4722	
t_{\scriptscriptstyleF}	-	12	-			
Reverse Char	acteristics					
	-	1.6	-		V _{GS} =0V, I _S =3.5A, T _J =25℃	
V_{SD}	-	2.5	-	V	V _{GS} =0V, I _S =7A, T _J =25℃	
	- 3.8 -		-		V _{GS} =0V, I _S =7A, T _J =150℃	
t _{RR}	-	18	-	ns	. 74 // 0// /// 2000 // // 2000 // //	
Q_{RR}	-	31	-	nC	I_S =7A, V_{GS} =0V, d_i/d_t =1000A/us, V_{DD} =400V	


Notes:

c. Dynamic on-resistance; see Figure 17 and 18 for test circuit and configurations

Circuit Implementation

(1) Mostly used in half bridge and full bridge topology

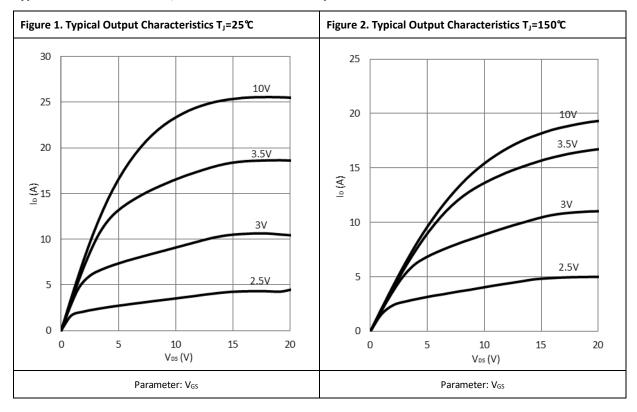

Recommended Half-bridge Circuit

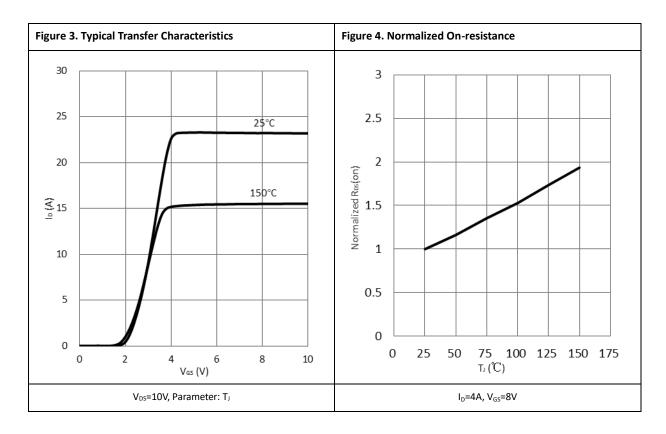
Recommended gate drive: (0 V, 8 V) with $R_{G(tot)} = 40 \Omega$, where $R_{G(tot)} = R_G + R_{driver}$

Gate Ferrite Bead (FB)	Gate Resistance (R _G)	RC Snubber (RC _{SN})
MPZ1608S471ATA00	33 Ω	69 pF + 15 Ω

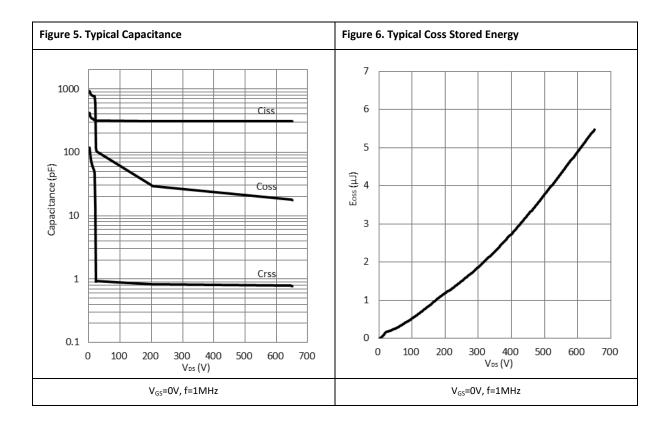
Notes:

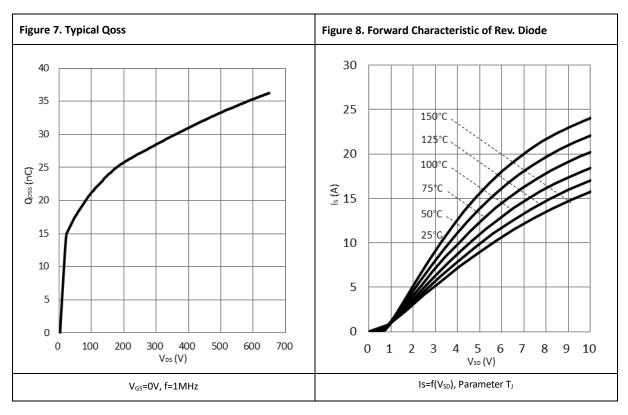
- d. RC_{SN} should be placed as close as possible to the drain pin
- e. The layout and wiring of the drive circuit should be as short as possible
- (2) Mostly used in flyback, forward and push-pull converters

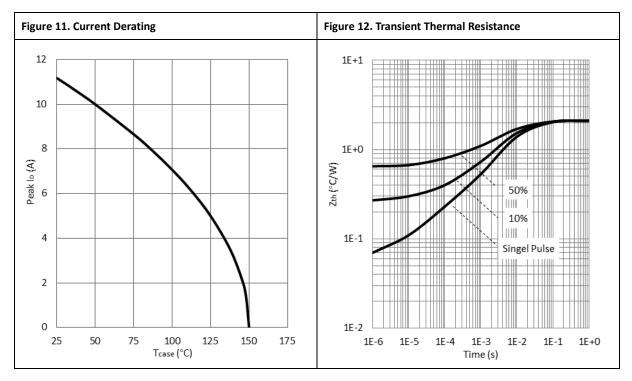

Recommended Single Ended Drive Circuit

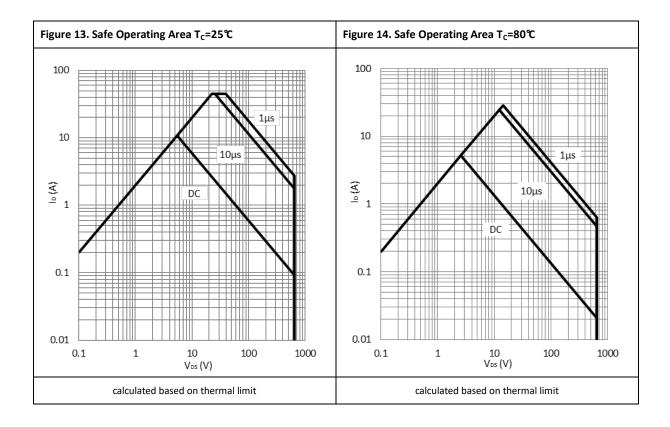

Recommended gate drive: (0 V, 12 V) with R_{Gon} = 300 - 500 Ω , R_{Goff} =10 Ω

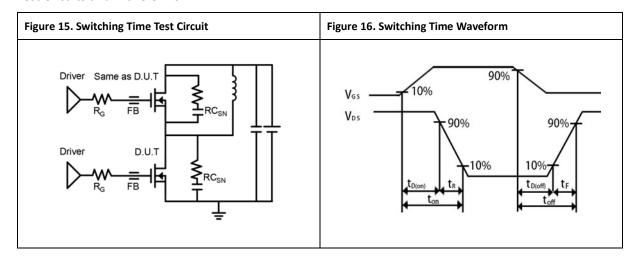
Gate Ferrite Bead(FB)	Gate Source Resistance(R _s)	Gate Diode (D1)
300 - 600 Ω@100MHz	10 kΩ	1N4148

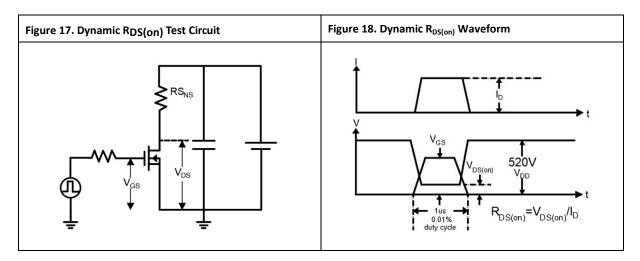


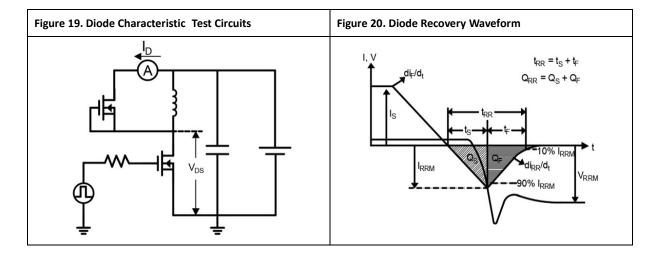

Typical Characteristics, at $T_C=25~^{\circ}C$, unless otherwise specified







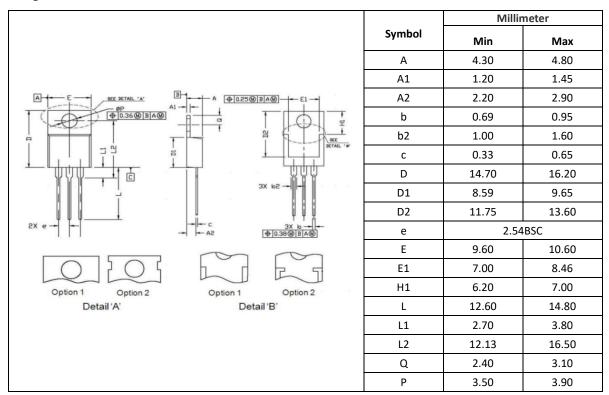




Test Circuits and Waveforms

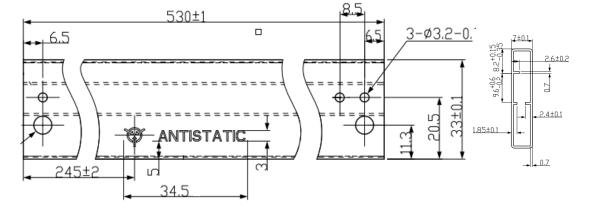
Design Considerations

Fast switching GaN device can reduce power conversion losses, and thus enable high frequency operations. Certain PCB design rules and instructions, however, need to be followed to take full advantages of fast switching GaN devices.


Before evaluating Runxin Micro's GaN devices, please refer to the table below which provides some practical rules that should be followed during the evaluation.

When Evaluating Runxin Micro's GaN Devices:

DO	DO NOT
Make sure the traces are as short as possible for both drive and power loops to minimize parasitic inductance	Using Runxin Micro's devices in GDS board layouts
Use the test tool with the shortest inductive loop, and make sure test points should be placed close enough	Use differential mode probe or probe ground clip with long wires
Minimize the lead length of DFN 8*8mm packages when installing them to PCB	Use long traces in drive circuit, or long lead length of the devices



Package Outline

Tube Information

Dimensions are shown in millimeters

Revision History

Version	Date	Change(s)
0.1	2022/12/24	Release preliminary datasheet
1.0	2023/11/16	Release formal datasheet
1.1	2024/02/01	Revise Q _{RR} , Q _{OSS} , t _{RR} , Figure 13, Figure 14

Disclaimer

Unless otherwise specified in the datasheet, the product is designed and qualified as a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability, such as automotive, aviation/aerospace and life-support devices or systems.

Any and all semiconductor products have certain probability to fail or malfunction, which may result in personal injury, death or property damage. Customer are solely responsible for providing adequate safe measures when design their systems.